Calcium current block by (-)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: comparison with effects on GABA-activated Cl- current.

نویسندگان

  • J M ffrench-Mullen
  • J L Barker
  • M A Rogawski
چکیده

Block of a voltage-activated Ca2+ channel current by phenobarbital (PHB), 5-(2-cyclohexylideneethyl)-5-ethyl barbituric acid (CHEB), and the optical R(-)- and S(+)-enantiomers of pentobarbital (PB) was examined in freshly dissociated adult guinea pig hippocampal CA1 neurons; the effects of the barbiturates on GABA-activated Cl- current were also characterized in the same preparation. (-)-PB, PHB, and CHEB produced a reversible, concentration-dependent block of the peak Ca2+ channel current (3 mM Ba2+ as the charge carrier) evoked by depolarization from -80 to -10 mV (IC50 values, 3.5, 72, and 118 microM, respectively). In contrast, (+)-PB was nearly inactive at concentrations up to 1 mM. The inhibitory action of PHB was decreased at acid pH, indicating that the dissociated (anionic) form of the molecule is the active species. Block by (-)-PB was voltage dependent with the fractional block increasing at positive membrane potentials; calculations according to the method of Woodhull indicated that the (-)-PB blocking site senses approximately 40% of the transmembrane electric field. The time course and voltage dependence of activation of the Ca2+ channel current were unaffected by (-)-PB, PHB, and CHEB. The rate of inactivation was enhanced by (-)-PB and CHEB, with the major effect being acceleration of the slow phase of the biexponential decay of the current. GABA-activated Cl- current was potently enhanced by (-)-PB and PHB (EC50 values, 3.4 and 12 microM), whereas (+)-PB was only weakly active. At concentrations of (-)-PB > 100 microM and PHB > 200-300 microM, Cl- current responses were activated even in the absence of GABA. These results demonstrate that in CA1 hippocampal neurons, PB causes a stereoselective block of a voltage-activated Ca2+ current; PHB is also effective, but at higher concentrations. For (-)-PB, the effect on Ca2+ channel current occurred at similar concentrations as potentiation of GABA responses. In contrast, PHB was more potent as a GABA enhancer than as blocker of Ca2+ current, but the maximal potentiation of GABA responses was 40% of that obtained with (-)-PB. Consequently, the anticonvulsant action of PHB at clinically relevant concentrations may relate to modest enhancement of GABA responses and partial blockade of Ca2+ current, whereas the sedative effects that occur at higher concentrations could reflect stronger Ca2+ current blockade. The powerful sedative-hypnotic action of (-)-PB may reflect greater maximal enhancement of GABA responses in conjunction with strong inhibition of Ca2+ current.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Blockade of glutamate receptors and barbiturate anesthesia: increased sensitivity to pentobarbital-induced anesthesia despite reduced inhibition of AMPA receptors in GluR2 null mutant mice.

BACKGROUND Barbiturates enhance gamma-aminobutyric acid type A (GABA(A)) receptor function and also inhibit the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive...

متن کامل

Pentobarbital depressant effects are independent of GABA receptors in auditory thalamic neurons.

Pentobarbital, a general anesthetic, has received extensive study for its ability to potentiate inhibition at GABA(A) subtype of receptors for GABA. Using whole cell current-clamp techniques and bath applications, we determined the effects of pentobarbital and GABA receptor antagonists on the membrane properties and tonic or burst firing of medial geniculate neurons in thalamic slices. Pentobar...

متن کامل

Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons.

The lability of the responses of mammalian central neurons to gamma-aminobutyric acid (GABA) was studied using neurons acutely dissociated from the CA1 region of the adult guinea pig hippocampus as a model system. GABA was applied to the neuronal somata by pressure ejection and the resulting current (IGABA) recorded under whole-cell voltage clamp. In initial experiments we examined several basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 1993